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LETTER TO THE EDITOR 

Screening approximation and the Kolmogorov spectrum of 
homogeneous isotropic turbulence 

J K Bhattacharjee 
Depmment of Physics, Indian Institute of Technology, Kanpur-u)8016, India 

Received 2 hlarch 1994 

Abstract If the physical pichue inherent in Kolmogorov’s description of turbulence is givm 
a mathematical implementation, then a finih theory of hnbulence ykldmg the Kolmogomv 
spectrum can be wmaed. We discuss how this on be done in a s m i n g  approximation 
which exploits the viscoelastic effect 

Homogeneous isotropic turbulence seems to support the Kolmogorov scaling (Kolmogorov 
1941) to a very high degree of accuracy for the low-order velocity stmcture factors. In 
particular for the two-point correlation C(k) which is related to the energy spectnun E(k),  
Kolmogorov scaling asserts that 

(1) 

where K is a universal constant and E is the rate at which energy is fed to maintain the 
turbulence. The validity of (1) is supposed to be in the inertial range characterized by 
momenta which are much larger than the momenta at which energy is injected (large spatial 
scales) and much smaller than the momenta at which energy is dissipated by moleculq 
viscosity (small spatial scales). The dimensional analysis which leads to (1) also provides 
the momentum dependence of an effective relaxation rate r ( k )  for the turbulent fluctuations 

k2C(k) = E(k)  = Kd 2/3k-5/3 

as 

where r is a universal constant 
One of the important problems in the analytic theory of turbulence has been the question 

of obtaining (1) and (2) from the Navier-Stokes equation for incompressible fluids. As stated 
very clearly by Leslie (Leslie 1972), one should start out with the scaling ansatz for C(k)  
and r (k ) ,  namely 

r(k) = r&’ (3b) 

and then establish that n = 1/3 and m = 11/3 as required by (1) and (2). The difficulty in 
doing this analysis was first noted by Edwards who showed that the perturbative treatment of 
velocity responses and correlation functions in the NavierStokes equation led to divergent 
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integrals (Leslie 1972). Overcoming this problem with divergent integrals has been the 
main challenge. 

Renormalization group (Yakhot and Orszag 1986) provided a way out of the difficulty. 
The starting point was a randomly stirred NavierStokes equation (Forster et al 1976, De 
Dominicis and Martin 1979) and the renormalization group recursion relation was obtained 
by eliminating wave numbers in a band in the high momentum range. The divergent which 
comes from the small wave numbers (infrared range) is then avoided. A mode coupling 
calculation which exploits the form of the random force in evaluating the response integrals 
yields identical answers mhattacharjee 1988). A common criticism of all such calculations 
is the special choice of the random force that one has to make in order to obtain the 
Kolmogorov spectrum. 

In this note, we point out that if the mathematics follows the physical picture of 
Kolmogorov in every detail, then one can get the Kolmogorov spectrum from the Navier- 
Stokes equation without having to worry about the exact nature of the random force. 
The necessity of the random external force is to maintain the turbulence and provide the 
distribution over which averaging bas to be done to calculate the response and correlation 
functions. The physical picture of Kolmogorov requires: 

(i) lossless transfer of energy across various momentum scales in the inertial range 
(ii) the largest scales (energy containing eddies) to simplify the small scales (energy 

dissipating eddies) and not to affect the dynamics at the small scales. 

It is well known (Orszag 1973) that in the Eulerian picture, the difficulty of ensuring the 
second constraint above leads to the infrared divergence. The way out could be a Lagrangiq 
picture (Kraichnan 1966) or a semi-Lagrangian one (Homer and Lipowsky 1979). however, 
calculations in the Lagrangian picture are tremendously difficult. Our point is that by using 
the screening produced by viscoelastic effects (Crow 1968), it is possible to e l i n a t e  the 
infrared divergence and implement the scheme proposed by Leslie. 

We consider the forced Navier-Stokes equation 

e ( k )  = - P i j n ( k ) ~ j ~ ) ~ n ( k  - P) + vk2ui(k) + fi ( 4 4  

with 

' pijnW = #jPi,(k) +knPi/(k)l (4b) 

where Pj,(k) is the projection operator Sij - kikj/k2. The principal elements of the 
calculation involve the response function F(k, o) and the correlation function C(k .  o) = 
(vi& w)ui(-k, -U)), where the angular brackets denote avenging over the statistics 
of the random force. The response function F ( k , o )  is to the zeroth order given by 
Go(k, o) = (-io + uk2)-'. The full response function is given by Dysons' equation 

G(k,  U)  = -io + vak2 + x ( k ,  o) 

Y -io + x ( k ,  o) 
(5) 

where the last line holds in the inertial range, where the molecular viscosity is negligible 
compared to the eddy viscosity C ( k ,  U). The self-constant single loop C ( k ,  o) is given 
by (Wyld 1961) 
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where b(k, j) is an angle-dependent dimensionless factor. The diagrammatic expansion for 
the correlation function can be written down but it yields no extra information beyond that 
contained in (6). The other independent entity is the expression for energy flux x(k) from 
momentum k to k + dk and following Leslie, this is 

x Ib(k i%C(P)C(q) - C(k)C(q)l+ P cf 41. (7) 

Between (6) and (7), we would have found the values of m and n of (3). but the infrared 
divergence of Edwards intervenes. Returning to (6) and considering the .zero frequency shelf 
energy C(k), we explore the contribution to the integral coming from the region p + 0. 
The important range of the frequency integral is the low frequency region where o (< E(k)  
and consequently (6) yields, for the anticipated Kolmogorov spectrum, 

(8) 

where is a low momentum cut-off in the integral which diverges as p + 0. The self- 
energy C(k)  thus obtained is a frequency which is the sweeping frequency corresponding 
to the sweeping time 5, - ~0k-'k;'~. This is the characteristic time of advection of small 
eddies by the large ones. The problem of the divergence has come about because in (6) the 
wave numbers p and k - p have coupled with extra strength for p + 0 and consequently 
the dynamics has been dominated by the sweeping time. 

We now note that (6) implies C(k,  o) vanishes for high frequency with the characteristic 
dynamic scaling behaviour (Ferrell et ai 1968, Hohenberg and Halperin 1968) 

2 -213 = Kok ko 

The eddy viscosity is thus frequency dependent (Bhattacharjee and Scalapino 1981) giving 
rise to the known viscoelastic effect (Crow 1968). The corresponding correlation function 
is 

for frequencies w such that or, >> 1. For lower frequencies, the viscoelastic effect is 
absent. We now return to (6) and with C(k) - k-'" (3u) find, on performing the frequency 
integration, 

Comparing with the integrand of (8). we see that a screening factor, the square bracket, 
has been inkcduced. As p --t 0, we note that C + ( p ,  o) = -i C(lc - p) becomes a 



L350 Letter to the Editor 

high-frequency self-energy and must have the form p2[C(k)J”-?’”) and hence we have a 
screening factor of p2-”. The convergence of the integral in (11) as p --f 0 is assured if 
m + n < 5. Under the conditions the scaling solution of (3) leads to (by a simple power 
counting) 

m + 2 n = 5 .  (12) 

Thus, the first of  the Kolmogorov requirement has been satisfied. The dynamic coupling of 
the large eddies (p + 0) and the small eddies ( p  - O(1)) has been screened by the factor 
p” coming from the viscoelastic effect. The second requirement of lossless cascade is 
met if the energy flux of (7) is independent of k and equal to the dissipation rate E. This 
leads, by power counting to, 

. .  

2 m + n = 8  (13) 

leading to m = 11/3 and n = 2/3 as required. Thus, the screening approximation faithfully 
captures ‘the physical picture of Kolmogorov and as expected leads to the Kolmogorov 
scaling. 
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